

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

All notable changes to Crinja will be documented in this file.

0.8.1 (2023-03-06)

Compatibility with PCRE2 (Crystal 1.8)

0.8.0 (2021-07-16)

Compatbility with Crystal 1.1

	Updates dependencies with more relaxed version restrictions

	Removes autogeneration for predicate method without suffix to avoid duplicate when conditions

	Fixes type bugs discovered through Crystal 1.1

	Adds GitHub actions

	Fixes some minor documentation bugs

0.7.0 (2021-02-06)

	Improves TagCycleException

	Adds do tag (#33, thanks @n-rodriguez)

	Adds compatibility with Crystal >= 0.35.1 and Shards >= 0.11.0

	Adds support for mapping predicate methods

	Smaller cleanup and improvements

0.6.1 (2020-06-09)

Compatibility with Crystal 0.35.0

0.6.0 (2020-04-03)

Compatibility with Crystal 0.34.0

	Improvements to Makefile and CI setup

	Use Log framework from Crystal 0.34.0

0.5.1 (2020-01-14)

This release brings compatibility with Crystal 0.32.1

0.5.0 (2019-06-07)

This release brings compatibility with Crystal 0.29.0

	Rename FeatureLibrary#aliasses to #aliases

	Add experimental support for liquid syntax with Crinja.liquid_support

0.4.1 (2019-01-01)

This release doesn’t add any new features but fixes compatibility with Crystal 0.27.0.

0.4.0 (2018-10-16)

This release comes with some refactorings of the public API to make it easier to use.
Most prominently, annotation based autogenerator for exposing object properties to the Crinja runtime were added.

require "crinja"

class User
 include Crinja::Object::Auto

 @[Crinja::Attribute]
 def name : String
 "john paul"
 end
end

Crinja.new.from_string("{{ user.name }}").render({"user" => User.new}) # => "john paul"

Autogeneration of crinja_call will be left for the next release.

Most other changes involve the CI infrastructure, with Circle CI taking over the main load from travis.

	(breaking-change) Replaced Crinja::PyObject by Crinja::Object and renamed hook methods to crinja_attribute and crinja_call. getitem hook has been removed.

	(breaking-change) Added Crinja::Object::Auto for generating automatic bindings for crinja_attribute (previously provided by Crinja::PyObject.getattr). The behaviour can be configured using annotations Crinja::Attribute and Crinja::Attributes.

	(breaking-change) Renamed Crinja::Callable::Arguments to Crinja::Arguments. The API has been simplified by removing unused setters.

	(breaking-change) Removed Crinja::Arguments#[](key : Symbol). Use a string key instead.

	(breaking-change) Renamed Crinja::Callable::Arguments::UnknownArgumentException to Crinja::Arguments.:UnknownArgumentError.

	(breaking-change) Renamed Crinja::Callable::Arguments::ArgumentError to Crinja::Arguments::Error.

	(breaking-change) Renamed Crinja::PyTuple to Crinja::Tuple.

	(breaking-change) Updated BakedFileLoader for compatibility with baked_file_system 0.9.6

	Upgraded to Crystal 0.26.1.

	Fixed number filters (int and float) to not rely on raising an error.

	Fixed generate-docs script.

	Added Makefile.

	Added Circle CI integration with nighly builds testing with Crystal nightly.

	Added integration tests for usage examples (./examples) in travis-ci and Circle CI.

	Added automatic docs generation to circle CI workflow and removed it from travis-ci.

	Added formatter checks to CI checks.

	Added preliminary Windows support by removing dependency on xml.

	Added this changelog.

	Improved reference to exmples in README.

0.3.0 (2018-06-29)

This release updated Crinja to work with Crystal 0.25.1

Notable changes:

	(breaking-change) Renamed Crinja::Environment to just Crinja

	(breaking-change) Removed Crinja::Type in favour of Crinja::Value to avoid recursive aliases and reduce a lot of .as(Type) castings all over the place. This change was similar to JSON::Type -> JSON::Any in Crystal 0.25.0.

	(breaking-change) Removed Crinja::Bindings. Some methods are obsolete with Crinja::Value, others moved to Crinja namespace.

	Added dedicated documentation of Template Syntax [https://github.com/straight-shoota/crinja/blob/5b1a3c30fac48f8bfccab5043fbda209f7859046/TEMPLATE_SYNTAX]

0.2.1 (2018-01-01)

crinja

[image: https://travis-ci.org/straight-shoota/crinja.svg?branch=master]Build Status [https://travis-ci.org/straight-shoota/crinja]
[image: https://circleci.com/gh/straight-shoota/crinja.svg?style=svg]CircleCI [https://circleci.com/gh/straight-shoota/crinja]
[image: https://www.codetriage.com/straight-shoota/crinja/badges/users.svg]Open Source Helpers [https://www.codetriage.com/straight-shoota/crinja]

Crinja is an implementation of the Jinja2 template engine [http://jinja.pocoo.org] written in Crystal [https://crystal-lang.org/]. Templates are parsed and evaluated at runtime (see Background). It includes a script runtime for evaluation of dynamic python-like expressions used by the Jinja2 syntax.

API Documentation [https://straight-shoota.github.io/crinja/api/latest/] ·
Github Repo [https://github.com/straight-shoota/crinja] ·
Template Syntax [https://github.com/straight-shoota/crinja/blob/master/TEMPLATE_SYNTAX]

Features

Crinja tries to stay close to the Jinja2 language design and implementation. It currently provides most features of the original template language, such as:

	all basic language features like control structures and expressions

	template inheritance

	block scoping

	custom tags, filters, functions, operators and tests

	autoescape by default

	template cache

From Jinja2 all builtin control structures (tags) [http://jinja.pocoo.org/docs/2.9/templates/#list-of-control-structures], tests [http://jinja.pocoo.org/docs/2.9/templates/#list-of-builtin-tests], global functions [http://jinja.pocoo.org/docs/2.9/templates/#list-of-global-functions], operators [http://jinja.pocoo.org/docs/2.9/templates/#expressions] and filters [http://jinja.pocoo.org/docs/2.9/templates/#list-of-builtin-filters] have been ported to Crinja. See Crinja::Filter, Crinja::Test, Crinja::Function, Crinja::Tag, Crinja::Operator for lists of builtin features.

Currently, template errors fail fast raising an exception. It is considered to change this behaviour to collect multiple errors, similar to what Jinjava does.

Installation

Add this to your application’s shard.yml:

dependencies:
 crinja:
 github: straight-shoota/crinja

Usage

Simple string template

require "crinja"

Crinja.render("Hello, {{ name }}!", {"name" => "John"}) # => "Hello, John!"

File loader

With this template file:

views/index.html.j2
<p>Hello {{ name | default('World') }}</p>

It can be loaded with a FileSystemLoader:

require "crinja"

env = Crinja.new
env.loader = Crinja::Loader::FileSystemLoader.new("views/")
template = env.get_template("index.html.j2")
template.render # => "Hello, World!"
template.render({ "name" => "John" }) # => "Hello, John!"

Crystal Playground

Run the Crystal playground inside this repostitory and the server is prepared with examples of using Crinja’s API (check the Workbooks section).

$ crystal play

You can also browse the examples and documentation online (without the interactive playground): objects [https://straight-shoota.github.io/crinja/api/latest/playground/objects.html] & features [https://straight-shoota.github.io/crinja/api/latest/playground/features.html]

Crinja Playground

The Crinja Example Server in examples/server [https://github.com/straight-shoota/crinja/tree/master/examples/server] is an HTTP server which renders Crinja templates from examples/server/pages. It has also an interactive playground for Crinja template testing at /play.

$ cd examples/server && crystal server.cr

Other examples can be found in the examples folder [https://github.com/straight-shoota/crinja/tree/master/examples].

Template Syntax

The following is a quick overview of the template language to get you started.

More details can be found in the template guide [https://github.com/straight-shoota/crinja/blob/master/TEMPLATE_SYNTAX].
The original Jinja2 template reference [http://jinja.pocoo.org/docs/2.9/templates/] can also be helpful, Crinja templates are mostly similar.

Expressions

In a template, expressions inside double curly braces ({{ … }}) will be evaluated and printed to the template output.

Assuming there is a variable name with value "World", the following template renders Hello, World!.

Hello, {{ name }}!

Properties of an object can be accessed by dot (.) or square brackets ([]). Filters modify the value of an expression.

Hello, {{ current_user.name | default("World") | titelize }}!

Tests are similar to filters, but are used in the context of a boolean expression, for example as condition of an if tag.

{% if current_user is logged_in %}
 Hello, {{ current_user.name }}!
{% else %}
 Hey, stranger!
{% end %}

Tags

Tags control the logic of the template. They are enclosed in {% and %}.

{% if is_morning %}
 Good Morning, {{ name }}!
{% else %}
 Hello, {{ name }}!
{% end %}

The for tag allows looping over a collection.

{% for name in users %}
 {{ user.name }}
{% endfor %}

Other templates can be included using the include tag:

{% include "header.html" %}

<main>
 Content
</main>

{% include "footer.html" %}

Macros

Macros are similar to functions in other programming languages.

{% macro say_hello(name) %}Hello, {{ name | default("stranger") }}!{% endmacro %}
{{ say_hello('Peter') }}
{{ say_hello('Paul') }}

Template Inheritance

Template inheritance enables the use of block tags in parent templates that can be overwritten by child templates. This is useful for implementating layouts:

{# layout.html #}

<h1>{% block page_title %}{% endblock %}</h1>

<main>
 {% block body %}
 {# This block is typically overwritten by child templates #}
 {% endblock %}
</main>

{% block footer %}
 {% include "footer.html" %}
{% endblock %}

{# page.html #}
{% extends "layout.html" %}

{% block page_title %}Blog Index{% endblock %}
{% block body %}

 {% for article in articles if article.published %}
 <div class="article">

 {{ article.title | escape }}
 written by {{ article.user.username | escape }}

 {%- endfor %}

{% endblock %}

Crystal API

The API tries to stick ot the original Jinja2 API [http://jinja.pocoo.org/docs/2.9/api/] which is written in Python.

API Documentation [https://straight-shoota.github.io/crinja/api/latest/]

Configuration

Currently the following configuration options for Config are supported:

 	autoescape

 	
 This config allows the same settings as select_autoescape in Jinja 2.9.

 It intelligently sets the initial value of autoescaping based on the filename of the template.

 When set to a boolean value, false deactivates any autoescape and true activates autoescape for any template.
 It also allows more detailed configuration:

 	enabled_extensions

 	List of filename extensions that autoescape should be enabled for. Default: ["html", "htm", "xml"]

 	disabled_extensions

 	List of filename extensions that autoescape should be disabled for. Default: [] of String

 	default_for_string

 	Determines autoescape default value for templates loaded from a string (without a filename). Default: false

 	default

 	If nothing matches, this will be the default autoescape value. Default: false

 Note: The default configuration of Crinja differs from that of Jinja 2.9, that autoescape is activated by default for HTML and XML files. This will most likely be changed by Jinja2 in the future, too.

 	disabled_filters

 	A list of *disabled_filters* that will raise a `SecurityError` when invoked.

 	disabled_functions

 	A list of *disabled_functions* that will raise a `SecurityError` when invoked.

 	disabled_operators

 	A list of *disabled_operators* that will raise a `SecurityError` when invoked.

 	disabled_tags

 	A list of *disabled_tags* that will raise a `SecurityError` when invoked.

 	disabled_tests

 	A list of *disabled_tests* that will raise a `SecurityError` when invoked.

 	keep_trailing_newline

 	Preserve the trailing newline when rendering templates. If set to `false`, a single newline, if present, will be stripped from the end of the template. Default: false

 	trim_blocks

 	If this is set to true, the first newline after a block is removed. This only applies to blocks, not expression tags. Default: false.

 	lstrip_blocks

 	If this is set to true, leading spaces and tabs are stripped from the start of a line to a block. Default: false.

 	register_defaults
 	If register_defaults is set to true, all feature libraries will be populated with the defaults (Crinja standards and registered custom features).
 Otherwise the libraries will be empty. They can be manually populated with library.register_defaults.
 This setting needs to be set at the creation of an environment.

See also the original Jinja2 API Documentation [http://jinja.pocoo.org/docs/2.9/api/].

Custom features

You can provide custom tags, filters, functions, operators and tests. Create an implementation using the macros Crinja.filter, Crinja.function, Crinja.test. They need to be passed a block which will be converted to a Proc. Optional arguments are a Hash or NamedTuple with default arguments and a name. If a name is provided, it will be added to the feature library defaults and available in every environment which uses the registered defaults.

Example with macro Crinja.filter:

env = Crinja.new

myfilter = Crinja.filter({ attribute: nil }) do
 "#{target} is #{arguments["attribute"]}!"
end

env.filters["customfilter"] = myfilter

template = env.from_string(%({{ "Hello World" | customfilter(attribute="super") }}))
template.render # => "Hello World is super!"

Or you can define a class for more complex features:

class Customfilter
 include Crinja::Callable

 getter name = "customfilter"

 getter defaults = Crinja.variables({
 "attribute" => "great"
 })

 def call(arguments)
 "#{arguments.target} is #{arguments["attribute"]}!"
 end
end

env = Crinja.new
env.filters << Customfilter.new

template = env.from_string(%({{ "Hello World" | customfilter(attribute="super") }}))
template.render # => "Hello World is super!"

Custom tags and operator can be implemented through subclassing Crinja::Operator and Crinja:Tag and adding an instance to the feature library defaults (Crinja::Operator::Library.defaults << MyTag.new) or to a specific environment (env.tags << MyTag.new).

Differences from Jinja2

This is an incomplete list of Differences to the original Jinja2:

	Python expressions: Because templates are evaluated inside a compiled Crystal program, it’s not possible to use ordinary Python expressions in Crinja. But it might be considered to implement some of the Python stdlib like Dict#iteritems() which is often used to make dicts iterable.

	Line statements and line comments: Are not supported, because their usecase is negligible.

	String representation: Some objects will have slightly different representation as string or JSON. Crinja uses Crystal internals, while Jinja uses Python internals. For example, an array with strings like {{ ["foo", "bar"] }} will render as [u'foo', u'bar'] in Jinja2 and as ['foo', 'bar'] in Crinja.

	Double escape: {{ '<html>'|escape|escape }} will render as <html> in Jinja2, but &lt;html&gt;. Should we change that behaviour?

	Complex numbers: Complex numbers are not supported yet.

	Configurable syntax: It is not possible to reconfigure the syntax symbols. This makes the parser less complex and faster.

The following features are not yet fully implemented, but on the roadmap:

	Sandboxed execution.

	Some in-depth features like extended macro reflection, reusable blocks.

Background

Crystal is a great programming language with a clean syntax inspired by Ruby, but it is compiled and runs incredibly fast.

There are already some template engines for crystal [https://github.com/veelenga/awesome-crystal#template-engine]. But if you want control structures and dynamic expressions without some sort of Domain Specific Language, there is only Embedded Crystal (ECR) [https://crystal-lang.org/api/0.21.1/ECR.html], which is a part of Crystal’s standard library. It uses macros to convert templates to Crystal code and embed them into the source at compile time. So for every change in a template, you have to recompile the binary. This approach is certainly applicable for many projects and provides very fast template rendering. The downside is, you need a crystal build stack for template design. This makes it impossible to render dynamic, user defined templates, that can be changed at runtime.

Jinja2 is a powerful, mature template engine with a great syntax and proven language design. Its philosophy is:

Application logic is for the controller, but don’t make the template designer’s life difficult by restricting functionality too much.

Jinja derived from the Django Template Language [http://docs.djangoproject.com/en/dev/ref/templates/builtins/]. While it comes from web development and is heavily used there (Flask [http://flask.pocoo.org/])
Ansible [https://ansible.com/] and Salt [http://www.saltstack.com/] use it for dynamic enhancements of configuration data. It has quite a number of implementations and adaptations in other languages:

	Jinjava [https://github.com/HubSpot/jinjava] - Jinja2 implementation in Java using Unified Expression Language [https://uel.java.net/] (javaex.el) for expression resolving. It served as an inspiration for some parts of Crinja.

	Liquid [https://shopify.github.io/liquid/] - Jinja2-inspired template engine in Ruby

	Liquid.cr [https://github.com/TechMagister/liquid.cr] - Liquid implementation in Crystal

	Twig [https://twig.symfony.com/] - Jinja2-inspired template engine in PHP

	ginger [https://hackage.haskell.org/package/ginger] - Jinja2 implementation in Haskell

	Jinja-Js [https://github.com/sstur/jinja-js] - Jinja2-inspired template engin in Javascript

	jigo [https://github.com/jmoiron/jigo] - Jinja2 implementation in Go

	tera [https://github.com/Keats/tera] - Jinja2 implementation in Rust

	jingoo [https://github.com/tategakibunko/jingoo] - Jinja2 implementation in OCaml

	nunjucks [https://mozilla.github.io/nunjucks/] - Jinja2 inspired template engine in Javascript

Contributing

	Fork it (https://github.com/straight-shoota/crinja/fork)

	Create your feature branch (git checkout -b my-new-feature)

	Commit your changes (git commit -am 'Add some feature')

	Push to the branch (git push origin my-new-feature)

	Create a new Pull Request

Contributors

	straight-shoota [https://github.com/straight-shoota] Johannes Müller - creator, maintainer

Introduction to Crinja Templates

The template features supported by Crinja are based on the Jinja2 template language [http://jinja.pocoo.org] which is originally written in Python.

API Documentation [https://straight-shoota.github.io/crinja/api/latest/] ·
Github Repo [https://github.com/straight-shoota/crinja]

Overview

Crinja template syntax can be embedded in any text content and individual templates features are enclosed in delimiters:

{{ }} - print
{% %} - tag
{# #} - comment

When a template is rendered, print statements enclosed by double curly braces ({{ … }}) print their inner value to the template output.
Template expressions inside will be evaluated.

Assuming there is a variable name with value "World", the following template expands to Hello, World!.

Hello, {{ name }}!

Tags control the logic of the template. They are enclosed in {% and %}.

The set tag for example is used for assigments:

{% set name = "John" %}
Hello, {{ name }}!

Most tags expect a content which spans between an opening tag and a closing tag. The latter has the same name name as the opening tag prefixed with end.
Tags can be nested.

{% if name == "World" %}
Hello 🌍!
{% endif %}

Comments are enclosed in {# and #}. They are not parsed as template content and will not included in the template output.

Variables

Template variables are defined in the context of each template.
Varibales can be populated externally by the application calling the template, or dynamically defined within.
The set tag allows to set or modify variables inside the template.

{% set name = "World" %}
Hello, {{ name }}! -> Hello, World!

Members of objects can be traversed by a dot (.). foo.bar resolves the property bar of object foo.
Another option are square brackets ([]) where the name of the member equals to the value between the brackets. Above expression would be equal to foo["bar"].

An empty value is expressed as none, similar to nil in Crystal.

If the value of a variable or expression simply does not exist at all, it will be undefined. Printing an undefined value will insert the empty string. In other contexts an undefined value might also be treated as empty or raise an error.

Filters

Filters transform or alter a value. They are appended to any expression using a pipe symobl (|) followed by the name of the filter. name | upper applies the filter upper to the value of the variable name.

Arguments are added in parenthesis: names | join(', ').

Filters can be chained and the outputs will be used in sequence:

Hello, {{ name | default("World") | titelize }}! -> Hello, WORLD!

Tests

Tests are conceptually similar to filters, but are used in the context of a boolean expression, for example as condition of an if tag.
Instead of a pipe they are applied using the keyword is.

For example, the expression name is defined returns true if the variable name is defined.

Test can accept arguments as well. If the test only takes one argument, the parentheses can be omitted: 9 is divisible by 3.

{% if current_user is logged_in %}
 Hello, {{ current_user.name }}!
{% else %}
 Hey, stranger!
{% endif %}

Tags

Tags control the logic of the template. They are enclosed in {% and %}.

{% if is_morning %}
 Good Moring, {{ name }}!
{% else %}
 Hello, {{ name }}!
{% end %}

The for tag allows looping over a collection.

{% for name in users %}
 {{ user.name }}
{% endfor %}

Other templates can be included using the include tag:

{% include "header.html" %}

<main>
 Content
</main>

{% include "header.html" %}

Macros

Macros can define re-usable template instructions that can be included in different places in the template.
They are similar to functions in other programming languages.

When a macro is called, the output produced by the macro is assigned as the return value of the expression.

{# define macro: #}
{% macro say_hello(name) %}Hello, {{ name | default("stranger") }}!{% endmacro %}
{# invoke macro #}
{{ say_hello('Peter') }} -> Hello, Peter!

{# print to a variable #}
{% set hello_paul = say_hello('Paul') %}
{{ hello_paul }} -> Hello, Paul!

{# invoke with default value %}
{{ say_hello() }} -> Hello, stranger!

Template Inheritance

Templates inheritance enables the use of block tags in parent templates that can be overwritten by child templates. This is useful for implementating layouts:

{# layout.html #}

<h1>{% block page_title %}{% endblock %}</h1>

<main>
 {% block body %}
 {# This block is typically overwritten by child templates #}
 {% endblock %}
</main>

{% block footer %}
 {% include "footer.html" %}
{% endblock %}

{# page.html #}
{% extends "layout.html" %}

{% block page_title %}Blog Index{% endblock %}
{% block body %}

 {% for article in articles if article.published %}
 <div class="article">

 {{ article.title | escape }}
 written by {{ article.user.username | escape }}

 {%- endfor %}

{% endblock %}

Custom features

You can provide custom tags, filters, functions, operators and tests. Create an implementation using the macros Crinja.filter, Crinja.function, Crinja.test. They need to be passed a block which will be converted to a Proc. Optional arguments are a Hash or NamedTuple with default arguments and a name. If a name is provided, it will be added to the feature library defaults and available in every environment which uses the registered defaults.

Example with macro Crinja.filter:

require "./crinja"
env = Crinja.new

myfilter = Crinja.filter({ attribute: nil }) do
 "#{target} is #{arguments["attribute"]}!"
end

env.filters["customfilter"] = myfilter

template = env.from_string(%({{ "Hello World" | customfilter(attribute="super") }}))
puts template.render

Or you can define a class for more complex features:

require "./crinja"
env = Crinja.new

class Customfilter
 include Crinja::Callable

 getter name = "customfilter"

 getter defaults = Crinja.variables({
 "attribute" => "great"
 })

 def call(arguments)
 "#{arguments.target} is #{arguments["attribute"]}!"
 end
end
env.filters << Customfilter.new

template = env.from_string(%({{ "Hello World" | customfilter(attribute="super") }}))
puts template.render

Using custom objects

To make custom objects usable in Crinja, they need to include Crinja::Object.

This module does not define any methods or requires a specific interface, it is just necessary to have a dedicated
type for this because Crystal cannot use Object as type of an instance variable (yet).

Types may implement the following methods to make properties accessbile:

	#crinja_attribute(name : Crinja::Value) : Crinja::Value:
Access an attribute (e.g. an instance property) of this type.

	#crinja_call(name : String) : Crinja::Callable | Callable::Proc | Nil:
Expose a callable as method of this type.

crinja_attribute must return an Crinja::Undefined if there is no attribute or item of that name. crinja_call returns nil in that case.

Example

require "./crinja"

class User
 include Crinja::Object

 property name : String
 property dob : Time

 def initialize(@name, @dob)
 end

 def age
 (Time.now - @dob).years
 end

 def crinja_attribute(attr : Crinja::Value)
 value = case attr.to_string
 when "name"
 name
 when "age"
 age
 else
 Crinja::Undefined.new(attr.to_s)
 end

 Crinja::Value.new(value)
 end
end

users = [
 User.new("john", Time.new(1982, 10, 10)),
 User.new("bob", Time.new(1997, 9, 16)),
 User.new("peter", Time.new(2002, 4, 1))
]

Crinja.render STDOUT, <<-'TEMPLATE', {users: users}
 {%- for user in users -%}
 * {{ user.name }} ({{ user.age }})
 {% endfor -%}
 TEMPLATE

Automatic exposure

The method definition of crinja_attribute is often pretty boring as it usually just maps names of methods to the respective method calls.

This can easily be generated automatically by the use of Crinja::Object::Auto. This module defines an automatically generated crinja_attribute method that exposes the types method as attributes.

A method will be exposed if it is annotated with @[Crystal::Attribute].

A type annotated with @[Crystal::Attributes] exposes all methods defined on that type and matching the signature (no argument, no block).
This annotation take an optional expose argument which whitelist methods to expose.

@[Crinja::Attributes(expose: [name, age])]
class User
 include Crinja::Object::Auto

 property name : String
 property dob : Time

 def initialize(@name, @dob)
 end

 def age
 (Time.now - @dob).years
 end
end

users = [
 User.new("john", Time.new(1982, 10, 10)),
 User.new("bob", Time.new(1997, 9, 16)),
 User.new("peter", Time.new(2002, 4, 1))
]

Crinja.render STDOUT, <<-'TEMPLATE', {users: users}
 {%- for user in users -%}
 * {{ user.name }} ({{ user.age }})
 {% endfor -%}
 TEMPLATE

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

